If it's not what You are looking for type in the equation solver your own equation and let us solve it.
429.75=t^2+50t
We move all terms to the left:
429.75-(t^2+50t)=0
We get rid of parentheses
-t^2-50t+429.75=0
We add all the numbers together, and all the variables
-1t^2-50t+429.75=0
a = -1; b = -50; c = +429.75;
Δ = b2-4ac
Δ = -502-4·(-1)·429.75
Δ = 4219
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-\sqrt{4219}}{2*-1}=\frac{50-\sqrt{4219}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+\sqrt{4219}}{2*-1}=\frac{50+\sqrt{4219}}{-2} $
| X/x-9=9/x-9+10 | | -85(x-49)=x+58 | | 3/2x-1=27 | | -6b-14=5b+8 | | 16-2r=r-2 | | 4+8=y-3 | | -85(x-49)=x+56 | | 15+1/4p=-2 | | x-2=3/4(x+4) | | x-2=3/4(x-4) | | 13+4n=n-8 | | m^2-10m+15=0 | | 11-1/3x=10 | | 5.5=-2+s | | 4.905t^2-6.88t+.65=0 | | -15-3x=-1+4x | | 10/x-1=10/4 | | 5-2r=10-2r | | 9(u-3)=-2u+17 | | 2x+9=97 | | 1-k=-k-1 | | 6*(3t+12)=2t*(3t+12) | | 4.905t^2-8.08t+.65=0 | | X^2+8x=38 | | 4^2x-1=8^x | | 1/3(3x-2)=2 | | 2(x-4)+0.5(2x+8x)=0 | | 9+6-6t=6 | | x-6=8x+6 | | 3x2+45=24x | | 6+2r=-r+5r | | 3y=2(4+12) |